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The genus Panulirus White, 1874, has long 
been of interest to evolutionary biologists be-
cause of its high level of species diversity and 
its extensive geographic dispersal, as well as 
its importance as a fisheries commodity 
(Holthuis 1991, Ptacek et al. 2001, Abdullah 
et al. 2010). The species are found generally 
along continental coasts and around islands 
from tropical to temperate regions (George 
and Main 1967).

Among the spiny lobsters, the pronghorn 
spiny lobster, Panulirus penicillatus (Olivier, 

1811), probably has the widest distribution. It 
is found in tropical and adjacent regions from 
southeastern Africa, the Red Sea, southern 
India, the Southeast Asian archipelago, Japan, 
northern Australia, and the southern and 
western Pacific islands, to Hawai‘i, the Galá-
pagos Islands, and other islands of the eastern 
Pacific (Holthuis 1991, Pitcher 1993). Panuli-
rus penicillatus supports considerable fisheries 
in tropical Pacific regions. The total harvest 
of lobsters for inhabitants of the Pacific island 
nations is important, both economically and 
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socially, despite the relatively small amount 
of  reported production in worldwide terms 
(Food and Agriculture Organization of the 
United Nations [FAO] 1987, Pitcher 1993). 
The recorded catch of the islands substantial-
ly underestimates the actual catch, primarily 
because a large proportion is consumed non-
commercially. Furthermore, marketing sys-
tems are generally informal and diffuse 
(Pitcher 1993).

The identification of groups of interbreed-
ing individuals as the basis for a fishery is a 
major issue in fisheries genetics (Thorpe et al. 
2000). The genetic breeding unit is often 
known as a stock in fisheries biology (which is 
roughly the same as a population to a geneti-
cist); this concept of stock has been discussed 
by many authors (e.g., Carvalho and Hauser 
1995 and references therein; Thorpe et al. 
2000). The common supposition is that within 
a stock there should be genetic homogeneity, 
and genetic divergence may occur between 
genetically isolated stocks over time (e.g., 
through drift, mutation, or selection) (Thorpe 
et al. 2000).

The assumptions that P. penicillatus phyl-
losoma larvae disperse widely and that unex-
ploited stocks offer a protected supply for 
breeding stock recruitment should be evalu-
ated before fisheries around most of the Pa-
cific nations become fully developed. These 
apparently reasonable assumptions underlie 
existing knowledge about the robustness of 
the actual Pacific P. penicillatus stocks. The 
degree of certainty in these assumptions may 
differ across the region (Prescott 1988, 
Pitcher 1993) owing to the distance from and 
wide variety of adjacent reefs and the intensity 
of fishing in an area.

The early life history of spiny lobsters con-
sists of a drifting larval period adapted for a 
relatively long-term stay in the open ocean, 
extending from several months to more than a 
year, with many possibilities for dispersal 
through ocean currents ( Booth and Phillips 
1994, Tolley et al. 2005). Much of the recent 
literature has focused on the role of the pe-
lagic larval duration in determining realized 
dispersal distances and has resulted in mixed 
conclusions (Shanks et al. 2003, Bowen et al. 
2006, Shanks 2009, Weersing and Toonen 

2009, Riginos et al. 2011, Treml et al. 2012). 
For example, pelagic larval duration has been 
shown to be a strong predictor of dispersal 
distances (Shanks et al. 2003), but Weersing 
and Toonen (2009) suggested that general 
acceptance of pelagic larval duration as a 
reliable predictor of population connectivity 
across broad taxonomic lines is clearly un-
founded. Indeed, pelagic larval duration was 
considerably correlated with dispersal dis-
tance, but there were many exceptions. Larval 
behavior can play a crucial role in determin-
ing dispersal distance (Shanks 2009), and type 
of eggs and life history parameters are also 
important predictors of connectivity in fishes 
( Bradbury et al. 2008, Riginos et al. 2011). 
Oceanographic currents are likely to create 
barriers and impact routes and directions of 
larval dispersal ( Baums et al. 2006, Treml 
et al. 2008, Riginos et al. 2011).

The duration of the planktonic larval phase 
(phyllosoma) of P. penicillatus has been re
ported previously, based on field and labora-
tory studies. Using field-caught plankton 
samples, Johnson (1968) estimated the dura-
tion of the phyllosoma stage under natural 
conditions to be >7 – 8 months. Minagawa 
(1990) cultured phyllosoma of P. penicillatus 
under laboratory conditions and described 
the phases from hatching up to the midstages 
(reared for 160 days). The complete larval de-
velopment of P. penicillatus in culture was 
subsequently documented by Matsuda et al. 
(2006), who reported a duration of 8.3 – 9.4 
months for phyllosome larvae in culture.

Several molecular techniques, including 
allozymes, restriction fragment length poly-
morphism (RFLP), mitochondrial DNA se-
quencing, and microsatellites, have been used 
in studying genetic variability in marine or-
ganisms at the population level (Shaklee and 
Bentzen 1998, Diniz et al. 2005). Mitochon-
drial DNA sequencing, particularly of the 
most rapidly evolving and highly variable 
control region, has been a useful tool for pop-
ulation genetic studies of many terrestrial and 
aquatic organisms (Avise 1994). The control 
region, which includes the D-loop in verte-
brates and is known as the AT-rich region in 
invertebrates, does not encode a functional 
protein and is therefore under fewer functional 
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and structural constraints, resulting in a high 
average substitution rate (Saccone et al. 1987, 
Diniz et al. 2005). Because it is generally the 
fastest-evolving region in the mitochondrial 
DNA of vertebrates and invertebrates, the 
control region is more sensitive than protein 
loci as a marker of phylogeographic structur-
ing for many organisms (Avise 2000, Diniz 
et al. 2005).

Identification of phyllosoma of P. penicilla-
tus from the western Pacific has been reported 
previously (Chow et al. 2006a,b). Further se-
quence analysis of cytochrome oxidase I and 
16S rDNA from a Pacific population of P. 
penicillatus indicated two distinct subpopula-
tions between the eastern and western/central 
Pacific; however, population analyses within 
the western/central Pacific and within the 
eastern Pacific were not possible because of 
the low variability in the markers and the 
small number of samples (Chow et al. 2011).

In the study reported here, we analyzed the 
highly polymorphic marker, mitochondrial 
DNA (mtDNA) control region of P. penicilla-
tus to determine whether genetic structure 
could be detected in Pacific Ocean popula-
tions. Information regarding the contempo-
rary population genetic structure combined 
with information on the life history of the 
species and the oceanographic history of the 
Pacific Ocean was used to infer larval distri-
bution patterns and recent evolutionary his-
tory. Given the economic importance of P. 
penicillatus, this genetic information may be 
valuable for long-term fisheries management 
decisions.

materials and methods

Lobster Samples

Adults of Panulirus penicillatus were collected 
from nine localities (see Table 1) throughout 
the western/central Pacific and eastern Pacific 
Ocean (Figure 1). Lobsters were purchased 
from local commercial fishers and fully com-
plied with local fisheries management and 
marine protected area controls. Tissues sam-
ples from walking legs (pereiopods) or abdo-
men were dissected on site, immediately fixed 
in 70% – 99% ethanol, and transferred to the 

laboratory. Phyllosoma larval samples of P. 
penicillatus from the western sea of the Galá-
pagos Islands of the East Pacific Ocean were 
from the study by Chow et al. (2011).

DNA Analysis

About 50 mg of finely minced tissue sample 
was added to a 1.5 ml plastic test tube con-
taining 0.5 ml TNES-8 M urea buffer (Asa-
hida et al. 1996). After adding 10 μl proteinase 
K, it was incubated at 38ºC for 3 hr and then 
genomic DNA was extracted using phenol-
chloroform procedure and precipitated with 
absolute ethanol according to the method 
described in Imai et al. (2004). The mtDNA 
control region was amplified using the poly-
merase chain reaction (PCR). Primers were 
designed manually specifically for Panulirus 
penicillatus (alignment of primer sequences 
against the Japanese spiny lobster Panulirus 
japonicus, DDBJ accession number AB071201). 
Several amplification attempts using the Pan-
ulirus12s primer (5′‑TATAGCAAGAAT-
CAAACTATAG), in the 12S ribosomal 
RNA gene, and the Panulirus-tRNA primer 
(5′‑CATAGACGGGGTATGAGCCCGT), 
in the tRNAmet gene, were unsuccessful. 
Thus,  a new reverse primer, Penicillatus-R 
(5′‑CATAGG(T/C)GTG(T/C)GAGGG
AACAAAGTC), was based on the conserva-
tive nucleotide sequence of P. penicillatus 
obtained with primers Panulirus12s and 
Panulirus-tRNA. Primers Panulirus12s and 
Penicillatus-R were used for sequencing. 
PCR amplifications were performed in 50 μl 
reaction mixtures containing 1 μl template 
DNA, 12.5 pmol of each primer, 5 μl 10X Ex 
Taq reaction buffer, 5 μl dNTP mixture, and 
2.5 unit Ex Taq Polymerase (Takara Bio 
Ltd.); the final volume of the reaction mixture 
was adjusted to 50 μl with sterile water. Reac-
tions were performed in a thermal cycler 
(Perkin Elmer GeneAmp PCR System 9700) 
under conditions of an initial denaturation 
step at 94°C for 2 min, followed by 30 cycles 
of 30 sec at 95°C, 30 sec at 50°C, and 1 min at 
72°C, with a final 7-min extension at 72°C. 
PCR products were purified using a PCR 
Product Pre-sequencing kit (Exosap, USB 
Co.). The cleaned products were sequenced 
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on an ABI 3730xl Genetic Analyzer (Applied 
Biosystems) using a Big Dye Terminator 
Cycle Sequencing kit (ver. 3.1, Applied Bio-
systems).

Genetic Data and Analyses

The nucleotide sequence data reported in this 
paper appear in the DDBJ/EMBL/GenBank 
nucleotide sequence databases with the ac
cession numbers AB689204 – AB689672. Se-
quence data were aligned using ClustalX 
(Thompson et al. 1997) with default align-
ment parameters and were checked manually 
for misalignments. The nucleotide composi-
tions and numbers of variable sites were as-
sessed with MEGA5 (Tamura et al. 2011). 
Haplotype and nucleotide diversity for each 
location were estimated using Arlequin (ver. 
3.5) software (Excoffier et al. 2005). We ran 

preliminary analysis on each data set using 
analysis of molecular variance (AMOVA) in 
Arlequin (ver. 3.5) to measure standard diver-
sity indices and pairwise FST (using haplotype 
frequency only) and FST (using genetic dis-
tance). FST was estimated using a Tamura-
Nei (1993) distance method with a gamma 
correction (a = 0.27) as determined by best 
nucleotide substitution models in MEGA5 
(Tamura et al. 2011). The statistical signifi-
cance of FST and FST value was tested by 1,000 
permutations. In addition, several groupings 
were tested with SAMOVA (ver. 1.0) (Dupan-
loup et al. 2002), an annealing procedure to 
define clusters of adjacent populations that 
maximize the proportion of genetic variance 
due to differences between groups (FCT), con-
sidering the geography of a region and ocean-
ographic patterns. Due to FST being relatively 
unaffected by high allelic diversity, unlike FST 

Figure 1. Map of the Pacific Ocean showing warm (solid lines) and cold currents (dashed lines), including the Oyashio 
Current (OC), Kuroshio Current ( KC), North Equatorial Current ( NEC), North Equatorial Counter Current 
( NECC), South Equatorial Counter Current (SECC), South Equatorial Current (SEC), California Current (CC), and 
Peru or Humboldt Current (PC). Dashed rectangles indicate population groupings (i.e., Ryukyu Archipelago, Indone-
sia, and East Pacific), closed circles indicate samples of adults, and the triangle indicates phyllosoma samples. Sampling 
site abbreviations correspond to those in Table 1. Ocean currents were drawn referring to Colling (2001).
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( Bird et al. 2011), we only report FST values. A 
neighbor-joining tree (Saitou and Nei 1987) 
based on FST values was constructed using 
Neighbor in Phylip (ver. 3.68) (Felsenstein 
2004). The median-joining network ( Bandelt 
et al. 1999) for the haplotypes was estimated 
using Network (ver 4.611) (http://www.
fluxus-engineering.com).

Mismatch distribution differences were es-
timated to review historical demography. The 
shape of the mismatch distribution is relevant 
because it may be used to deduce whether a 
population is undergoing sudden population 
expansion or is in equilibrium (Rogers and 
Harpending 1992). Generally, chaotic and 
multimodal distributions suggest a population 
of constant size, whereas unimodal distribu-
tions reflect a population that has experienced 
a sudden demographic expansion. Parameters 
of the model of sudden expansion (τ, θ0, θ1) 
and mismatch distribution differences were 
estimated using Arlequin (ver. 3.5). 
Goodness-of-fit test was computed using Ar-
lequin (ver. 3.5), calculated based on the sum 
of squared deviations (SSD) between ob-
served and expected distribution under the 
sudden expansion, with the P value represent-
ing the probability of obtaining a simulated 
SSD equal to or larger than the observed one 
(Schneider and Excoffier 1999). Tajima’s test 
of neutrality (Tajima 1989) was estimated 
using Arlequin (ver. 3.5), Tajima’s D test is 
commonly used to test neutrality; however, it 
can also be used to examine population growth 
because population expansion may result in 
rejection of the null hypothesis of neutrality 
(significant negative D value).

results

Genetic Diversity

In total, sequence data of 569 base pairs (bp) 
(western/central Pacific region samples) and 
570 bp (eastern Pacific region samples) were 
obtained from 480 specimens of P. penicillatus. 
Of the 571 aligned base pairs, 326 variable 
sites (excluding indels) were found: 246 were 
parsimony informative and 81 were single-
tons. In total, 469 haplotypes were identified, 
and nearly all sequenced individuals had a 

unique haplotype (Table 1). The nucleotide 
sequences of the haplotypes were deposited in 
the DNA Data Bank of Japan (DDBJ) under 
accession numbers AB689204 – AB689672.

The average nucleotide composition of the 
control region was 38.1% adenine, 31.6% 
thymine, 19.3% cytosine, and 11% guanine, 
consistent with previous reports of an AT-
rich control region of the mitochondrial ge-
nome in many invertebrates, including crus-
taceans (McMillen-Jackson and Bert 2004, 
Diniz et al. 2005). Haplotype diversity (h) 
within the geographical populations was high, 
ranging from 0.9996 in the Ryukyu Archipel-
ago to 1.0000 in Hachijojima Island, Taiwan, 
and French Polynesia. Nucleotide diversity 
(π) was generally high, ranging from 0.0300 in 
the East Pacific to 0.0582 in Hachijojima Is-
land (Table 1). Four of the shared haplotypes 
were represented at two geographical sites, 
and the other two were shared only between 
individuals restricted to the same geographical 
site (Supplemental Appendix S1).

Authors’ Note: Supplemental Appendix 
S1 available only on BioOne (http://www.
bioone.org/  ).

Structure of the Pronghorn Spiny Lobster 
Population

Individuals were binned into six groups of 
populations defined by geographical region 
and oceanographic history (i.e., exposure to 
currents): Hachijojima Island (n = 45); Ama-
mioshima, Okinawajima, and Ishigakijima 
Islands in the Ryukyu Archipelago (162); 
Taiwan (47); Java Sea and Gebe Island in In-
donesia (97); French Polynesia (47); and Isa-
bela Island and phyllosome larvae from the 
western sea of the Galápagos Islands in the 
East Pacific (81). In addition, SAMOVA max-
imized at two groups, with the Isabela Island 
and phyllosome larvae from the western sea of 
the Galápagos Islands in the East Pacific 
grouped separately from the rest of the sam-
pling sites (FCT = 0.76, P < .05). An AMOVA 
based on conventional F statistics (haplotype 
frequency only) failed to detect any popula-
tion structure, but an AMOVA using the 
Tamura-Nei (1993) distance performed on 
the mtDNA sequence data set revealed a 
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structure in population. There was no signifi-
cant population distinction within samples 
from western/central Pacific populations by 
AMOVA. The pairwise FST among popula-
tions were high between eastern Pacific and 
western/central Pacific populations (0.858 –  
0.889) (Table 2). Congruent with the pattern 
observed in the network haplotypes (Plate I), 
we found strong regional structuring between 
eastern and western/central Pacific popula-
tions of P. penicillatus, which explained most 
genetic variations (85%) between the regions. 
To analyze the substructure in the western/
central Pacific area we attempted three types 
of regional grouping: (1) Hachijojima-
Ryukyu-Taiwan-Indonesia and French Poly-
nesia, (2) Hachijojima-Ryukyu-Taiwan and 
Indonesia – French Polynesia, and (3) 
Hachijojima-Ryukyu-Taiwan, Indonesia, and 
French Polynesia. Regarding these group-
ings, genetic variation and FST among popula-
tions was small (% var. -0.19 to -0.11) and 
did not differ significantly from 0 (Table 3). A 
neighbor-joining tree based on FST values 
showed a prominent genetic break between 
western/central Pacific and eastern Pacific 
populations (Figure 2). Based on the 
goodness-of-fit test, P. penicillatus could be 
fitted to an expansion model (all the popula-
tion has P > .05) (Figure 3). However, this 
method is quite conservative, rarely rejecting 
the expansion model (Schneider and Excoffier 
1999). Indeed, visual inspection of the mis-
match distributions suggested a multimodal 
profile, as is typical of demographically stable 

populations (Rogers and Harpending 1992). 
The mismatch distribution for the entire 
sample deviated significantly from the ex
pected distribution under a sudden expansion 
model. This outcome is supported by a lack of 
significance with Tajima’s D test, except for 
eastern Pacific samples, where Tajima’s test 
showed significant negative values (D = 

‑1.557, P = .039). Appropriate dating of 
population expansions was not possible be-
cause mutation rates for the mtDNA control 
region in this species have not been estimated. 
Thus, the mutation rate was calculated ac-
cording to Babbucci et al. (2010), ranging 
between 8.1% and 13.4% per million years, 
and applied to the model T = τ/2u (Rogers 
and Harpending 1992), where T = time since 
expansion, 2u = μ × number bases sequenced 
× generation time (3 yr generation). A rough 
estimation suggested that population expan-
sions occurred in the late Pleistocene: 52,000 
to 200,000 yr ago for western/central Pacific 
P. penicillatus and 41,000 to 68,000 yr ago for 
the eastern Pacific.

discussion

Mitochondrial DNA (mtDNA) has been 
widely used for studies of genetic differentia-
tion in the spiny lobster genus Panulirus. Ge-
netic differences were not detected between 
samples of P. japonicus along the Japanese 
coast, supporting the hypothesis that benthic 
individuals of P. japonicus are sustained from a 
common pool of long-period phyllosoma 

TABLE 2

Pairwise FST Values (Above the Diagonal) and Pairwise FST P Values ( Below the Diagonal) of Mitochondrial DNA 
Control Region among Populations of Panulirus penicillatus

Locality
Hachijojima 

Island
Ryukyu 

Archipelago Taiwan Indonesia
French 

Polynesia East Pacific

Hachijojima Island 0.00159 0.01011 0.00094 0.00944 0.88118
Ryukyu Archipelago .21622 -0.00430 -0.00005 -0.00338 0.85811
Taiwan .1081 .85586 -0.00121 -0.00966 0.88506
Indonesia .36036 .34234 .59459 0.00075 0.87229
French Polynesia .16216 .78378 .95495 .34234 0.88886
East Pacific .00000* .00000* .00000* .00000* .00000*

*  P < .05.
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larvae through long-distance larval transport 
within the Kuroshio Subgyre (Inoue et al. 
2007). High genetic variability of the blue 
spiny lobster, P. inflatus, along the Pacific 
coast of Mexico has been observed. Further-

more, it has been suggested that the lack of 
genetic population structure is related to 
oceanographic flows in the area, coupled with 
a long larval period (García-Rodríguez and 
Perez-Enriquez 2008). A high level of diver-

TABLE 3

AMOVA Results Showing Degrees of Freedom (df  ), Variance Components (  Var.), Percentage Variation (% Var.) 
and F Statistics for Panulirus penicillatus

Locality df Var. % Var. F Statistics P Value

All sites (western-central/eastern Pacific)
Among regions
Among populations
Within populations

1
4

474

84.19733
0.00997

14.58564

85.23
0.01

14.76

FCT = 0.85226
FSC = 0.00068
FST = 0.85236

.16129

.51222

.00000
Western-central Pacific region

(Hachijojima-Ryukyu-Taiwan-Indonesia/French 
Polynesia)

Among regions
Among populations
Within populations

1
3

394

-0.0303
0.00192

15.75562

-0.19
0.01

100.18

FCT = -0.00193
FSC = 0.00012
FST = -0.00181

.78495

.43304

.49853

(Hachijojima-Ryukyu-Taiwan/Indonesia-French Polynesia)
Among regions
Among populations
Within populations

1
3

394

-0.01748
0.00435

15.75562

-0.11
0.03

100.08

FCT = -0.00111
FSC = 0.00028
FST = -0.00083

.70283

.44673

.50538
(Hachijojima-Ryukyu-Taiwan/Indonesia/French Polynesia)

Among regions
Among populations
Within populations

2
2

394

-0.02017
0.00763

15.75562

-0.13
0.05

100.08

FCT = -0.00128
FSC = -0.00080
FST = -0.00080

.47019

.44477

.52395

Note: Runs included all populations, as described in the text (1,000 permutations).

Figure 2. Neighbor-joining population tree based on FST values, illustrating the most probable geographical structure 
in the analysis of molecular variance (AMOVA). The proportion of genetic variance due to differences between groups 
(FCT) of the western/central and eastern Pacific was calculated using SAMOVA. The results suggest that there is high 
gene flow between populations of Panulirus penicillatus in the western/central Pacific region, whereas restricted gene 
flow was found between populations of the western/central Pacific region and eastern Pacific region. The Japanese 
spiny lobster P. japonicus was used as outgroup.

(CS4)   UHP (7”×10”)  Janson Text     J-2863 Pacific Science, 68:2  pp. 204–212  PS_68-2_03� (p. 204)
AC2: (idp) 04/04/2014� 4 April 2014 12:45 PM

(CS4)   UHP (7”×10”)  Janson Text     J-2863 Pacific Science, 68:2  pp. 205–212  PS_68-2_03� (p. 205)
AC2: (idp) 04/04/2014� 4 April 2014 12:45 PM



Genetic Diversity and Population Structure of Panulirus penicillatus  ·   Abdullah et al.� 205

gence was also observed between Brazilian 
and northwestern Atlantic populations of P. 
argus, and this genetic distinction may have 
arisen due to the pattern of the South Equato-
rial Current in the area (Sarver et al. 1998, 
Diniz et al. 2005).

Water movement patterns have also been 
suggested to influence the genetic population 
structures of other crustaceans. In the red 
rock lobster, Jasus edwardsii, which occurs in 

southern Australia and New Zealand, mtDNA 
assessment failed to detect genetic subdivi-
sions of populations spanning 4,500 km of its 
range (Ovenden et al. 1992). The currents 
leaving southern Australia and flowing past 
New Zealand may transport larvae masses. 
However, in the green rock lobster, Sagmari-
asus verreauxi ( J. verreauxi synonym), genetic 
distinctions were detected between Australian 
and New Zealand populations using mtDNA 

Figure 3. Mismatch distribution established for Panulirus penicillatus mitochondrial control region. Bars represent the 
observed frequency of the pairwise differences among haplotypes, and the line shows the expected curve predicted for 
a population that has undergone a demographic expansion in the past. The parameters of the model of sudden expan-
sion (Rogers and Harpending 1992) are presented as well as goodness-of- fit test to the model: SSD sum of squared 
deviations; θ0, pre-expansion and θ1, postexpansion population sizes; τ, time in number of generations elapsed since the 
sudden expansion episode. Tajima’s (1989) D test value and its statistical significance are also given.
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( Brasher et al. 1992, Chan 2010). Previous 
study of P. penicillatus using analysis of COI 
and 16s rDNA found two distinct subpopula-
tions between the eastern and western/central 
Pacific (Chow et al. 2011). However, popula-
tion analyses within the western/central Pa-
cific and within the eastern Pacific were not 
possible due to low variability of markers and 
small number of samples.

In the study reported here, the mtDNA 
control region exhibited high genetic vari-
ability (h = 0.9996 to 1.0000 and π = 0.0300 to 
0.0581); these are relatively high values com-
pared with the control region diversities of 
other Panulirus spp. (P. inflatus: h = 0.957 to 
1.0000 and π = 0.019 to 0.028 [García-
Rodríguez and Perez-Enriquez 2008]; P. 
argus: h = 0.667 to 1.0000 and π = 0.003 to 
0.066 [Diniz et al. 2005]). The control region 
is a noncoding region that includes signals 
necessary for replication of a molecule and is 
the most rapidly evolving region of mtDNA 
(Heyer et al. 2001). The high genetic variabil-
ity of the control region in P. penicillatus may 
be maintained by its large population size. In 
fact, because nearly all individuals represented 
a unique haplotype, an investigation based on 
sequencing the control region would require 
a very large sample size to detect common 
haplotypes and associate them with particular 
geographic areas (García-Rodríguez and 
Perez-Enriquez 2008). The evolutionary pat-
tern of interhaplotypic divergence will almost 
always produce a biogeographic signature, 
and an analysis that recognizes genetic dis-
tance among alleles will provide additional 
resolution, especially for hypervariable 
markers ( Bird et al. 2011).

Significant genetic divergence was found 
between eastern and western/central Pacific 
populations based on polymorphic markers 
(the control region). Our statistical assign-
ment of genetic heterogeneity among popula-
tions found genetic isolation only between 
P.  penicillatus from the eastern Pacific and 
western/central Pacific, with no genetic struc-
turing observed within each region (Table 3). 
For P. penicillatus differentiation of the eastern 
Pacific and western/central Pacific with re-
spect to mtDNA traits may be due to contem-
porary isolation/gene flow or prior isolation 

with recent gene flow, although the overall 
level of genetic exchange must be below that 
required to homogenize the populations.

No population structure was found within 
the population of P. penicillatus inhabiting the 
western Pacific to the central Pacific: Hachi-
jojima Island, Ryukyu Archipelago, Taiwan, 
Indonesia, and French Polynesia. Genetic 
similarities were also shown in this region for 
other marine organisms such as coral, fish, 
and starfish (Acanthaster planci  ) (Rodriguez-
Lanetty and Hoegh-Guldberg 2002, Mukai 
et al. 2009, Yasuda et al. 2009). Furthermore, 
another Panulirus species, P. japonicus, was 
found to be sustained from a common pool of 
long-period phyllosoma larvae through long-
distance larval transport within the Kuroshio 
Subgyre (Inoue et al. 2007). For P. penicillatus, 
long larval life (nearly 1 yr) of the phyllosoma 
(  Johnson 1968, Booth and Phillips 1994, 
Matsuda 2006) coupled with the considerable 
impact of oceanic current systems or gyres 
(e.g., the Kuroshio and Equatorial Currents) 
may explain the observed patterns. The Ku-
roshio Current, a strong western boundary 
current, flows northeastward and is suspected 
to transport larvae to the northwestern Pa
cific. Furthermore, transportation of larvae 
between the western-central Pacific more 
likely occurred indirectly via stepping-stones 
by the Equatorial Currents, and small 
amounts of larval dispersal over years might 
result in genetic homogeneity. Unfortunately, 
population analysis within the eastern Pacific 
could not be done because there were only 
two locations in this study.

Predicting connectivity of marine popula-
tions is extremely difficult due to the unknown 
and variable biology of larvae, the complex 
physical environment, and the inherent diffi-
culties in considering the range in spatial and 
temporal scales covered by larval dispersal 
(  Werner et al. 2007, Botsford et al. 2009, 
Treml et al. 2012). Currently, biophysical 
modeling approaches have been used to 
understand the spatial patterns in connectivity 
by integrating seascape data with a species’ 
life-history characteristics (Treml et al. 2008, 
White et al. 2010, Kool et al. 2011). Bio
physical studies demonstrate how complex 
oceanographic information can be used to 
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provide insight into the evolution of genetic 
structure in marine environments ( Kool et al. 
2011).

Panulirus penicillatus has been reported to 
be commercially abundant in the eastern 
Pacific, particularly in the Galápagos Islands 
(George and Main 1967, Holthuis and Loesch 
1967). Panulirus penicillatus represents more 
than 75% of the annual spiny lobster catch in 
the Galápagos Islands, which in recent years 
has shown indications of decline in abundance 
(Hearn and Murillo 2008). The phyllosoma 
larvae of P. penicillatus have been found 
throughout the tropical eastern Pacific some 
3,500 – 4,000 km west of the nearest likely 
source (the Galápagos Islands); this suggests 
the apparent crossing of the East Pacific Bar-
rier, a vast stretch of open ocean that divides 
the majority of Pacific islands from those to 
the east and corresponds to a major break in 
faunal composition (Ekman 1953, Johnson 
1974, Pitcher 1993). Johnson (1974) also indi-
cated that the countercurrents within the 
Equatorial Current System (Figure 1) could 
provide possible routes for the return of 
eastern Pacific species that have either fortu-
itously or instinctively shifted into counter-
currents, possibly through habits of diurnal 
migrations, and that have not drifted west-
ward to a point of no return, determined by 
requirements inherent in their life cycle. In 
the study reported here we detected genetic 
structure between eastern Pacific populations 
and western/central Pacific populations, indi-
cating that despite the nearly 1-yr larval 
period for this species (e.g., Booth and Phil-
lips 1994, George 2005), the larvae generally 
could not pass over the East Pacific Barrier, or 
they could regularly cross this barrier but 
failed to survive in appreciable numbers in 
other regions due to some selective advantage 
of local recruits and habitat preferences. The 
absence of intermediate “stepping-stones” 
(areas of available adult habitat that provide 
generational layovers between the end of one 
dispersal event and the beginning of another 
population) can represent a major barrier to 
dispersal and gene flow (Crandall et al. 2012). 
More important, the lack of shared mtDNA 
haplotypes and large FST values suggest that 
there has been prolonged historical isolation 

between the western/central Pacific and 
eastern Pacific populations.

Further analysis on recruitment of P. peni-
cillatus phyllosoma larvae may be necessary 
because genetic distinction in eastern Pacific 
populations may indicate the potential self-
recruitment of phyllosoma larvae in this re-
gion. Although phyllosoma larvae are weak 
swimmers, they have the ability to maintain 
their vertical position in the water column 
(  Johnson 1974). Larval dispersal for spiny 
lobsters has been previously modeled. Griffin 
et al. (2001) discovered that P. cygnus was a 
self-recruiting species, restricted to Western 
Australia. A more recent simulation study of 
P. argus found the average dispersal of P. argus 
in the Caribbean Sea to be possibly only 
200 – 400 km, suggesting that larval behavior 
such as vertical migration, together with a 
retentive oceanographic environment, may 
increase the potential for self-recruitment 
( Butler et al. 2011).

Adult P. penicillatus show variations in body 
color, including yellow green, brown green, 
blue black, and dark reddish brown (Holthuis 
1991, George 2006). The dark reddish-brown 
form is regionally limited to the eastern Pa-
cific, within the Galápagos, Clipperton, So-
corro, and Revillagigedo Islands, where it is 
known as the “red lobster” (Holthuis and 
Loesch 1967, Holthuis 1991, George 2006). 
It is probably restricted to the eastern Pacific 
because of equatorial currents. Consistent 
with previous findings, we identified morpho-
logical variability in the body color of P. peni-
cillatus species: eastern Pacific populations 
had a reddish body and western/central Pa-
cific populations had a greenish body (Plate 
I). George (2006) proposed that the genetic 
distinctions for subpopulations of P. penicilla-
tus from the eastern Pacific, referred to as P. 
penicillatus red, could be explained by assum-
ing that the East Pacific Barrier of Ekman 
(1953) represents a major barrier that main-
tains the isolation of these subpopulations. 
However, further research is recommended 
to clearly establish the correlation in the vari-
ation of morphological color in this species.

Historical demographic parameters of P. 
penicillatus from western/central Pacific popu-
lations reveal a more stable population history 
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compared with populations from the eastern 
Pacific. The expansion of the P. penicillatus 
population was estimated to have occurred 
52,000 to 200,000 yr ago for the western/
central Pacific and 41,000 to 68,000 yr ago for 
the eastern Pacific during the Pleistocene. 
The late Pleistocene Period (the past 1 mil-
lion yr) was punctuated by a series of large 
glacial and interglacial changes (Imbrie et al. 
1992).

The pattern of mismatched distributions 
of P. penicillatus differed between the western/
central Pacific and eastern Pacific regions, 
and the expansion age parameter (τ) was lower 
in the eastern Pacific region. Those tenden-
cies may results from higher diversity and size 
of the population in the western/central 
Pacific, which could maintain diversity as a 
metapopulation, whereas the eastern Pacific 
population is smaller and probably more re-
cent in origin.
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Appendix S1. Spatial Distribution of Control Region Haplotypes among Panulirus penicillatus from Eight Localities in the Western Pacific and Two Localities in the Eastern Pacific Region 

 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 

1 1          
2 1          
3 1          
4 1          
5 1          
6 1          
7 1          
8 1          
9 1          
10 1          
11 1          
12 1          
13 1          
14 1          
15 1          
16 1          
17 1          
18 1          
19 1          
20 1          
21 1          
22 1          
23 1          
24 1          
25 1          
26 1          
27 1          
28 1          
29 1          
30 1          
31 1 1         
32 1          
33 1          
34 1          
35 1          
36 1          
37 1          
38 1          
39 1          
40 1  1        
41 1          
42 1          



 Locality 
Haplotype No. Hachijiojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
43 1          
44 1          
45 1          
46  1         
47  1         
48  1         
49  1         
50  1         
51  1         
52  1         
53  1         
54  1         
55  1         
56  1         
57  1         
58  1         
59  1         
60  1         
61  1         
62  1         
63  1         
64  1         
65  1         
66  1         
67  1         
68  1         
69  1         
70  1         
71  1         
72  2         
73  1         
74  1         
75  1         
76  1         
77  1         
78  1         
79  1         
80  2         
81  1         
82  1         
83  1         
84  1         
85  1         



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
86  1         
87  1         
88  1         
89  1         
90  1         
91  1         
92  1         
93  1         
94   1        
95   1        
96   1        
97   1        
98   1 1       
99   1        
100   1        
101   1        
102   1        
103   1        
104   1        
105   1        
106   1        
107   1        
108   2   1     
109   1        
110   1        
111   1        
112   1        
113   1        
114   1        
115   1        
116   1        
117   1        
118   1        
119   1        
120   1        
121   1        
122   1        
123   1        
124   1        
125   1        
126   1        
127   1        
128   1        
129   1        



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
130   1        
131   1        
132   1        
133   1        
134   1        
135   1        
136   1        
137   1        
138   1        
139   1        
140   1        
141   1        
142   1        
143   1        
144   1        
145   1        
146   1        
147   1        
148   1        
149   1        
150   1        
151    1       
152    1       
153    1       
154    1       
155    1       
156    1       
157    1       
158    1       
159    1       
160    1       
161    1       
162    1       
163    1       
164    1       
165    1       
166    1       
167    1       
168    1       
169    1       
170    1       
171    1       
172    1       
173    1       



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
174    1       
175    1       
176    1       
177    1       
178    1       
179    1       
180    1       
181    1       
182    1       
183    1       
184    1       
185    1       
186    1       
187    1       
188    1       
189    1       
190    1       
191    1       
192    1       
193    1       
194    1       
195    1       
196    1       
197    1       
198    1       
199    1       
200    1       
201     1      
202     1      
203     1      
204     1      
205     1      
206     1      
207     1      
208     1      
209     1      
210     1      
211     1      
212     1      
213     1      
214     1      
215     1      
216     1      
217     1      



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
218     1      
219     1      
220     1      
221     1      
222     1      
223     1      
224     1      
225     1      
226     1      
227     1      
228     1      
229     1      
230     1      
231     1      
232     1      
233     1      
234     1      
235     1      
236     1      
237     1      
238     1      
239     1      
240     1      
241     1      
242     1      
243     1      
244     1      
245     1      
246     1      
247     1      
248      1     
249      1     
250      1     
251      1     
252      1     
253      1     
254      1     
255      1     
256      1     
257      1     
258      1     
259      1     
260      1     
261      1     



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
262      1     
263      1     
264      1     
265      2     
266      1     
267      1     
268      1     
269      1     
270      1     
271      1     
272      1     
273      1     
274      1     
275      1     
276      1     
277      1     
278      1     
279      1     
280      1     
281      1     
282      1     
283      1     
284      1     
285      1     
286      1     
287      1     
288      1     
289      1     
290      1     
291      1     
292      1     
293      1     
294      1     
295      1     
296      1     
297      1     
298      1     
299      1     
300      1     
301       1    
302       1    
303       1    
304       1    
305       1    
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Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
306       1    
307       1 1   
308       1    
309       1    
310       1    
311       1    
312       1    
313       1    
314       1    
315       1    
316       1    
317       1    
318       1    
319       1    
320       1    
321       1    
322       1    
323       1    
324       1    
325       1    
326       1    
327       1    
328       1    
329       1    
330       1    
331       1    
332       1    
333       1    
334       1    
335       1    
336       1    
337       1    
338       1    
339       1    
340       1    
341       1    
342       1    
343       1    
344        1   
345        1   
346        1   
347        1   
348        1   
349        1   



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
350        1   
351        1   
352        1   
353        1   
354        1   
355        1   
356        1   
357        1   
358        1   
359        1   
360        1   
361        1   
362        1   
363        1   
364        1   
365        1   
366        1   
367        1   
368        1   
369        1   
370        1   
371        1   
372        1   
373        1   
374        1   
375        1   
376        1   
377        1   
378        1   
379        1   
380        1   
381        1   
382        1   
383        1   
384        1   
385        1   
386        1   
387        1   
388        1   
389        1   
390         1  
391         1  
392         1  
393         1  



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
394         1  
395         1  
396         1  
397         1  
398         1  
399         1  
400         1  
401         1  
402         1  
403         1  
404         1  
405         1  
406         1  
407         1  
408         1  
409         1  
410         1  
411         1  
412         1  
413         1  
414         1  
415         1  
416         1  
417         1  
418         1  
419         1  
420         1  
421         1  
422         1  
423         1  
424         1  
425         1  
426         1  
427         1  
428         1  
429         1  
430         1  
431         1  
432         1  
433         1  
434         1  
435         1  
436         1  
437         1  



 Locality 
Haplotype No. Hachijojima Amamioshima Okinawajima Ishigakijima Taiwan Java Sea Gabe Island French Polynesia Western sea of the Galápagos Islands Isabela Island 
438          1 
439          1 
440          2 
441          1 
442          1 
443          1 
444          1 
445          1 
446          1 
447          1 
448          1 
449          1 
450          1 
451          1 
452          1 
453          1 
454          1 
455          1 
456          1 
457          1 
458          1 
459          1 
460          1 
461          1 
462          1 
463          1 
464          1 
465          1 
466          1 
467          1 
468          1 
469          1 
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